
Sediment ¯ow in inclined vessels calculated using a
multiphase particle-in-cell model for dense particle ¯ows

D.M. Snider a, *, P.J. O'Rourkeb, M.J. Andrews c

aFlow Analysis, 6504 Avenida La Costa NE, Albuquerque, NM 87109, USA
bTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

cMechanical Engineering Department, Texas A&M University, College Station, TX 77843, USA

Received 22 September 1997; received in revised form 20 February 1998

Abstract

Sedimentation of particles in an inclined vessel is predicted using a two-dimensional, incompressible,
multiphase particle-in-cell (MP-PIC) method. The numerical technique solves the governing equations of
the ¯uid phase using a continuum model and those of the particle phase using a Lagrangian model.
Mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to
particle positions allows a complete solution of sedimentation from a dilute mixture to close-pack. The
solution scheme allows for distributions of types, sizes and density of particles, with no numerical
di�usion from the Lagrangian particle calculations. The MP-PIC solution method captures the physics
of inclined sedimentation which includes the clari®ed ¯uid layer under the upper wall, a dense mixture
layer above the bottom wall, and instabilities which produce waves at the clari®ed ¯uid and suspension
interface. Measured and calculated sedimentation rates are in good agreement. # 1998 Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The separation of particles from a ¯uid by means of gravity is an important step in many
industrial processes as well as in the environment. Homogenous, batch sedimentation begins
with a uniform distribution of suspended particles in a container. If left alone, the particles
separate from the ¯uid into distinct regions of particles that depend on the particle densities
and sizes as illustrated in Fig. 1 for a bimodal suspension. A suspension with a variety of
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particle sizes and densities will form multiple regions, where each region above the previous
region contains one less species, where a species is a group of particles with near the same
particle size and density. The top of the vessel will be clear ¯uid (providing particle densities
are greater than the ¯uid density) and the bottom of the vessel will contain all species. In cases
where there is a large variation between sizes and/or density of species, the regions are distinct
and separated by strong concentration gradients. A monodisperse mixture containing one size
and density particle forms a single region of suspended particles under a clear ¯uid. Davis and
Acrivos (1985) and Al-Naafa' and Selim (1989) provide reviews of experiments and analysis of
polydisperse suspensions. Richardson and Zaki (1954) gave an empirical equation for the
settling velocity of a monodisperse mixture which compares well with data. The settling
velocity is

Us � Uo�1ÿ yp�nÿ1 �1�
where Uo is the terminal velocity, yp is the particle volume fraction and n is a constant about
5. Mirza and Richardson (1978) extended the empirical relation to polydisperse suspensions.
Al-Naafa' and Selim (1989), using conservation of mass and empirical settling velocities,
provided an analytical model that predicts well the settling of polydisperse suspensions. A
calculation by Shih et al. (1987) for bimodal settling using a one-dimensional, multi¯uid,
numerical solution compared well with experimental data, and Andrews and O'Rourke (1995)
presented an accurate prediction of polydisperse settling of a suspension using a one-
dimensional MP-PIC numerical method.
Boycott (1920) reported that by tilting the container, corpuscles separated from blood

quicker than when the container was vertical. The settling in a tilted container is illustrated in
Fig. 2. Position A in Fig. 2 is the distinct horizontal interface between the clear ¯uid and
mixture (B). The initial height of the mixture is H, the transient height of the interface is h and
the vessel width is b. A thin layer of upward ¯owing clear ¯uid forms (C) at the downward-
facing surface, and concentrated particles ¯ow down the upward-facing surface (D). Many

Fig. 1. Illustration of a vertical bimodal suspension.
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investigators have studied tilted container phenomena and have provided analytical models of
the settling. Davis and Acrivos (1985) and Kapoor and Acrivos (1995) provide reviews of
inclined sedimentation. Ponder (1925) and Nakumura and Kuroda (1937) postulated that for
tilted containers the horizontal mixture interface and the interface under the downward facing
surface fall at the same mixture velocity as for a vertical container. In the analytical model, the
thin ¯uid ®lm under the downward facing surface was added directly to the clear ¯uid above
the top of the mixture. The settling rate is

dh=dt � ÿUo�1� �h=b�sin a�; �2�
where a is the angle of inclination and Uo is the mixture interface velocity for a vertical vessel.
Acrivos and Herbolzheimer (1979) showed that the simple settling model given by Ponder et al.
was accurate for a monodisperse suspension, at low Reynolds number, with an initial uniform
particle distribution, a large Grasho� number when compared with the Reynolds number, and
a stable interface between clear ¯uid and suspension. Kinosita (1949) noted that particles in a
tilted container did not settle through a quiescent ¯uid as in a vertical container, but that
strong convective currents form a vortex in the suspended phase with particle velocities as high
as 100 times the sedimentation velocities. The dynamic nature of inclined sedimentation is
further shown by the observed instabilities at the interface between the clear ¯uid ¯owing up
under the downward-facing surface and the particle mixture. The instabilities are seen as waves
at the interface in photographs by Herbolzheimer (1983).
The analytical and semi-empirical predictive methods developed over the years compare well

with data and have provided insight into the mixing process; yet these methods are only
suitable for simple geometry and special conditions. To date, the authors do not know of any
numerical calculation which captures the mixing behavior of inclined sedimentation. One major
di�culty to obtain numerical solutions in polydisperse suspensions is the number of equations
required to model each of the species. For a multi-¯uid solution, each species (di�erent size
and density particle) requires a set of conservation equations. Numerical methods are required

Fig. 2. Illustration of a tilted vessel suspension.
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to predict this common industrial and environment process for polydisperse mixtures in
complex geometries over a wide range of conditions. In this paper, a unique numerical scheme
which predicts the dynamic inclined sedimentation and the more static vertical sedimentation
with practically an unlimited range in particle sizes and densities is presented. Results from the
numerical calculations are compared with experimental data.

2. Solution method

Mathematical models of separated particulate multiphase ¯ow have used either a continuum
approach for all phases (Gidaspow, 1986; Batchelor, 1988) or a continuum for the ¯uid and a
Lagrangian model for particle (Amsden et al., 1989). The continuum/continuum model readily
allows modeling of particle-particle stresses in dense particle ¯ows using spatial gradients of
particle volume fractions (Batchelor, 1988; Gidaspow, 1994). However, modeling a distribution
of types and sizes of particles complicates the continuum formulation because separate
continuity and momentum equations must be solved for each size and type (Risk, 1993;
Gidaspow, 1994). Using a continuum model for the ¯uid phase and a Lagrangian model for
particle phase allows economical solution for ¯ows with a wide range of particle types, sizes,
shapes and velocities (O'Rourke, 1981; Gidaspow, 1994). However, the collision frequency is
high for volume fractions above 5% and cannot be realistically resolved by current Lagrangian
collision calculations (O'Rourke, 1981).
The MP-IPC method presented here provides a numerical scheme whereby the particle phase

is treated as both a continuum and as discrete particles, gaining the best of both methods.
Particle properties are mapped to and from an Eulerian grid. While on the grid, continuum
derivatives that treat the particle phase as a ¯uid are evaluated and then mapped back to the
individual particles. The result of this procedure is a computational technique for multiphase
¯ow that can handle particle loadings ranging from dilute to dense with a distribution of
particle materials and sizes.
The governing equations for the continuum and particles are given. The ¯uid phase is

incompressible and inviscid, and ¯uid and particle phases are isothermal. The ¯uid or Eulerian
variables are denoted by subscript f, and the particle or Lagrangian variables are denoted by
subscript p.

3. Governing equations

3.1. The ¯uid phase

The continuity equation for the ¯uid with no interphase mass transfer is

@yf
@t
� r � �yfuf� � 0; �3�

where uf is the ¯uid velocity and yf is the ¯uid volume fraction.
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The momentum equation for the ¯uid is

@�yfuf�
@t
� r � �yfufuf� � ÿ 1

rf
rpÿ 1

rf
F� yfg; �4�

where rf is ¯uid density, p is ¯uid pressure and g is the gravitational acceleration. F is the rate
of momentum exchange per volume between the ¯uid and particles phases. The momentum
equation neglects viscous molecular di�usion in the ¯uid but retains the viscous drag between
particles and ¯uid through the interphase drag force, F.

3.2. The particulate phase

The dynamics of the particle is described using the particle probability distribution function
f(x, up, rp, Vp, t), where x is the particle position, up is the particle velocity, rp is the particle
density and Vp is the particle volume (Andrews and O'Rourke, 1996). For the present it is
assumed that the mass of each particle is constant in time (no mass transfer between particles
or to the ¯uid), but particles may have a range of sizes and densities. The probability function
integrated over velocity and mass gives the probable number of particles per unit volume at x
and t in the interval (up, up+dup), (rp, rp+drp) and (Vp, Vp+dVp). The particle volume
fraction is de®ned from the particle distribution function as

yp �
� � �

fVp dVp drp dup: �5�

The sum of volume fractions of ¯uid and particle phases must equal unity, yp+yf =1.
The time evolution of f is obtained by solving a Liouville equation for the particle

distribution function (Williams, 1985)

@f
@t
�r � �fup� � rup � �fA� � 0; �6�

where the particle acceleration, A=dup/dt, is given by

A � Dp�uf ÿ up� ÿ 1

rp
rp� gÿ 1

yprp
rt: �7�

The terms in (7) represent acceleration due to aerodynamic drag, pressure gradient, gravity and
gradients in the interparticle stress, t.
The drag model is a modi®ed Stoke's equation with a hindrance term to account for velocity

and concentration of particles. The drag coe�cient is

Dp � Cd
3

8

rf
rp

j uf ÿ up j
r

; where Cd � 24

Re

�
yÿ2:65f � 1

6
Re2=3yÿ1:78f

�
: �8�

The Reynolds number is de®ned as Re=2rf vufÿupvr/mf , where mf is the ¯uid viscosity and the
particle radius is r=(3 Vp/4p)

1/3. Small particles have a higher interphase drag than larger
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particles, and the interphase drag term is the mechanism which separates a polydisperse
suspension of di�erent size particles into layers.
Collisions between particles are modeled by an isotropic interparticle stress where the o�

diagonal elements of the stress tensor are neglected. The particle stress is from Harris and
Crighton (1994)

t � Psy
b
p

ycp ÿ yp
; �9�

where the constant Ps has units of pressure, and y cp is the particle volume fraction at close
packing. The particle stress equation depends only on the concentration of particles and
neglects the size and velocity of particles. A more detailed model of the full stress tensor is
relegated to future work. Auzeris et al. (1988) recommend 2E bE5, and b=3 was used for
the inclined sedimentation calculations in this study.
The interphase momentum transfer function per volume is obtained from

F �
� � �

fVprp

�
Dp�uf ÿ up� ÿ 1

rp
rp
�
dVp drp dup: �10�

4. Interpolation functions

Particle properties are mapped to and from the Eulerian grid using a bilinear interpolation
function as part of the numerical solution. Because a staggered grid is employed, scalar
properties, de®ned at cell centers, are mapped with one set of interpolation functions, and face
center velocities are mapped with another set. The bilinear interpolation function is formed
from the product of linear interpolation functions in the x and y directions, Si,j=Sxi

Syj
.

The Sxi
and Syi

symmetric, saw-tooth functions are unity at a node and linearly decrease to
zero at their neighbor nodes. The bilinear interpolation function, Si,j, which is dependent on
both x and y±coordinates, is unity at the cell center (i,j) and decreases to zero at the
surrounding eight nodes. For a Cartesian grid, four grid nodes are used to interpolate a grid
property to a particle in two dimensions. Fig. 3 shows nodes used to interpolate the scalar
property to a particle position. The sum of the interpolation functions is unity,
S 4

z=1S(xp)z=1, where z is the index on the four Eulerian nodes bounding the particle [(i,j),
(i+1, j), (i+1, j+1), and (i,j+1)].
The particle volume fraction, yp, on the Eulerian grid is calculated by

ypi;j �
1

Vi;j

X
p

NpVpS�xp�i;j; �11�

where Np is the number of particles in a parcel. The Eulerian cell volume is Vi,j.
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5. Numerical method

The governing equations for ¯uid and particles are solved on the computer. A computational
particle method is used to solve for the particle distribution rather than direct solution of the
Liouville equation. Particle properties are mapped to and from the grid using the bilinear
interpolation functions. The incompressible, two-dimensional continuum equations are solved
using a ®nite volume method. The numerical method implicitly couples phases through the
interphase momentum transfer.
The numerical scheme uses an implicit calculation to overcome signal-wave limits on the

computational time step. If the solution scheme was explicit, the numerical time step would be
limited by the Courant±Friedrichs±Lewy condition and especially by stress waves from the
interparticle stress (Gidaspow, 1986). In two dimensions, the implicit solution gives four sets of
equations containing two velocities, pressure and particle volume fraction. A set of equations is
solved for one variable while holding the other variables ®xed. Coupling between implicit
variables is introduced by iterative solution of the sets of equations. As will be discussed later,
the particle volume fraction needs to be solved in continuum form while iterating in the
implicit loop.

5.1. Particle equations

Particles are grouped into computational parcels each containing Np particles with identical
density, rp, volume, Vp, and velocity, up, located at position, xp. The Liouville Eq. (6) is the
mathematical expression of conservation of particle numbers in volumes moving along
dynamic trajectories in particle phase space. Thus the number of particles Np associated with a
parcel is constant in time. By assumption, there is no mass exchange between particles, and a
particle's mass, mp, is constant. The particle velocity equation is from integration of Eq. (7)
which is implicitly approximated by

un�1p �
unp � Dt

�
Dpu

n�1
f;p ÿ 1

rp
rpn�1p ÿ 1

rpyp
rtn�1p � g

�
1� DtDp

; �12�

Fig. 3. Interpolation from Eulerian grid to a particle position.
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where un+1
f,p is the interpolated implicit ¯uid velocity at the particle location, Hp n+1

p is the
interpolated implicit pressure gradient at the particle location, Ht n+1

p is the interpolated
implicit particle stress gradient at the particle location, g is gravity, and Dp is the drag
coe�cient. Particle positions are calculated from

xn�1p � xnp � Dtun�1p : �13�

5.2. Fluid equations

The numerical scheme uses a ®nite volume method with staggered scalar and momentum
nodes. The two-dimensional ®nite volume approximation uses a rectangular or cylindrical grid
where scalar variables, pressure and volume fraction, are de®ned at cell centers and velocities
are de®ned at volume surfaces staggered between cell centers. The time derivative is
approximated by a backward di�erence, convective terms are approximated by upwind
di�erencing and gradients are approximated by a backward di�erence. The algebraic form of
the ¯uid equations has been given by Anderson et al. (1984), Patankar (1980) and others and is
not repeated here.
The particle phase is implicitly coupled to the ¯uid phase through the interphase drag force.

The interphase momentum transfer from particles to ¯uid is

Fn�1
i�1=2;j �

1

Vi�1=2;j

X
p

Si�1=2;j

�
Dp�un�1f;p ÿ unp� ÿ

1

rp
rpn�1p

�
Npmp; �14�

where mp is the mass of a particle. The ¯uid velocity, un+1
f,p , at a particle position is an

interpolated quantity involving neighboring grid velocities. Similarly, the interpolated pressure
gradient Hp n+1

p and particle stress gradient Ht n+1
p introduce neighbor quantities. Eq. (14)

involves an interpolation to a particle position and then a mapping back to the Eulerian grid.
The interpolation to the grid can be obtained by multiplying the two interpolation functions by
the variable. Alternatively, it can be noted that the drag term mapped to the grid can be
written asX

p

Si�1=2;j

�
Dp�un�1f;p ÿ unp�

�
Npmp �

X
p

Si�1=2;j

�
Dp

X4
z�1

Sz�un�1fz ÿ unp�
�
Npmp; �15�

where summation of z is over the four staggered grid nodes supporting interpolation in two
dimensions. The quantity in brackets in (15) is the aerodynamic drag applied to a particle.
From conservation of momentum, the net momentum transfer between particle and ¯uid is
zero. It can be reasoned that the momentum from a node to a parcel (for example the
[DpS i,j(u

n+1
fi,j
ÿunp)Npmp] is the momentum transfer from node (i, j) to particle p) must be the

same as the momentum transfer from a particle to the node. Therefore, for the x-momentum,
the product of interpolation functions is de®ned as

Si�1=2;jSk�1=2;j � 0
Si � 1=2; j

if i 6� k
if i � k

: �16�
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Both the multiplication of the two bilinear interpolation functions given in Eq. (15) and the
mapping given by Eq. (16) conserve momentum. The interpolation from particle to grid given
by Eq. (16) has the advantage that it is less di�usive, reduces the number of neighbor velocities
in an equation, and increases diagonal dominance of the equation sets. The product of
interpolation functions given by (16) is used in this study.
The interphase momentum, F, given by Eq. (14) is substituted into the numerical form of

¯uid momentum Eq. (4) and summed over all particles. The resulting velocity equation, using
the interpolation product de®nition (16), is

Vzrf�yfuf�n�1z

Dt
��uf�n�1z

X
p

mpNpSz�xp�Dp

� Vzrf�yfuf�nz
Dt

ÿconvn�1z ÿ Vzrpn�1z � Vzrfy
n
f zg

�
X
p

mpNpSz�xp�
rp

rpn�1z �
X
p

mpNpSz�xp�Dpu
u
p: �17�

The abbreviated subscript, z, corresponds to a face center, and conv is the convective term.
The u-velocity in terms of coe�cients on neighbor velocities and on pressure is

un�1i�1=2;j �
X9
k�1

eki�1=2;jp
n�1
k �

X5
k�1

fki�1=2;ju
n�1
k � Cui�1=2;j; �18�

where e and f are coe�cients formed from old time values, and Cu is a constant. The
summation index k, implies the neighbor nodes. A 6 point stencil arises for the velocity and a 9
point stencil arises for the pressure.

6. Computation of particle volume fraction on the Eulerian grid

It is not prudent to update the volume fraction within an iteration loop where particles are
continuously summed as given by (11). Andrews and O'Rourke (1996) and Snider et al. (1997)
presented a method of approximating the new-time volume fraction on the Eulerian grid using
explicit coe�cients. In the method, a time step begins by estimating new particle positions
using the old particle velocities:

~xp � xnp � unpDt: �19�

~ypi;j �
1

Vi;j

X
p

mpNp

rp
Si;j�~xp�: �20�

The volume fraction at the end of the time step is estimated using a Taylor series expansion of
(19) about the intermediate particle position xÄ p and retaining linear terms:
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yn�1pi;j
1~ypi;j �

1

Vij

X
p

mpNp

rp
rSi;j�~xp� � �xn�1p ÿ ~xp�: �21�

Substituting xn+1
p from (13), xÄ p from (19), and un+1

p from (18) into (21) gives an approximate
value for the new-time particle volume fraction:

~yn�1pz �~ypz � Dt2

Vz

X
p

mpNpDp

rp�1�DpDt� rSz�~xp� � un�1f;p

� Dt2

Vz

X
p

mpNp

rp�1�DpDt� rSz�~xp� � g

ÿ Dt2

Vz

X
p

mpNp

rp�1�DpDt�DprSz�~xp� � unp

ÿ Dt2

Vz

X
p

mpNp

r2p�1�DpDt� rSz�~xp� � rpn�1p

ÿ Dt2

Vz

X
p

mpNp

r2py
n
p�1�DpDt� rSz�~xp� � rtn�1p : �22�

Abbreviated subscripts are used where z is the cell center node, HS z is the gradient of the
interpolation function, and un+1

f,p , Hp n+1
p and Ht n+1

p are ¯uid velocity, pressure and
interparticle stress at particle locations, respectively. The implicit particle void fraction written
in terms of coe�cient is

yn�1i;j � ~yi;j �
Xm
k�1

aki;jp
n�1
k �

Xn
k�1

bki;ju
n�1
f;k �

Xn
k�1

cki;jn
n�1
f;k �

Xmÿ1
k�1

dki;jy
n�1
k � Cyi;j; �23�

where a, b, c and d are coe�cients de®ned from old time values, and the volume fraction is
introduced through a linearized Ht. The new volume fraction depends on m neighbor pressures
and volume fractions and n neighbor face center uf and nf velocities. The pressure and particle
stress gradients de®ned from a bilinear interpolation give a 16 point stencil for pressure and
volume fraction.

7. Calculation of polydisperse vertical suspensions

The bimodal suspension of a glass beads experiment given by Davis et al. (1982) is
calculated by the MP-PIC method. The vessel is vertical as illustrated in Fig. 1. The ¯uid
density and viscosity are 992 kg/m3 and 0.0667 kg/(m-s), respectively. The small glass bead
density is 2440 kg/m3 and beads range in diameter from 125 to 150 mm. The larger bead
density is 2990 kg/m3 and beads range in diameter from 177 to 219 mm. The calculation uses a
uniform random distribution of particle sizes between the reported experimental ranges. Initial
volume fractions for the small and large beads are 3% and 1%, respectively. Speci®cations for
the calculation are given in Table 1.
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Fig. 4 shows the particle distribution at three times. Three regions can be observed. The top
region is ¯uid, the next region is light particles and ¯uid, and the lower region contains ¯uid,
light particles and heavy particles. Particles concentrate in the lower section of the vessel and
approach the close-pack limit. Fig. 5 shows a one- and two-dimensional calculation of the
transient interface levels compared with experimental data. The ®gure shows that the MP-PIC
solution does well in calculating the vertical bimodal sedimentation.

8. Calculation of inclined sedimentation

The MP-PIC method is applied to the experiment given by Acrivo and Herbolzheimer
(1979). The container was 5 cm wide and 40 cm high, and experiments were run with the
container tilted at 08, 208, and 358. The ¯uid density was 992 kg/m3 and the viscosity was
0.0667 kg/(m-s). The particles were glass beads with a uniform random distribution of radii
from 65 to 71 mm and density of 2420 kg/m3. Calculations began with the container tilted
(mixture-¯uid interface was tilted at an angle to vessel walls). The height of the mixture height
reported in this study, h, is illustrated in Fig. 6. Speci®cations for the MP-PIC calculation are
given in Table 2.
The calculated particle distributions at 200 s for the container tilted 08, 208 and 358 are

shown in Fig. 7. Fig. 8 shows the particle volume fraction contours at times during the
transient settling for the container tilted 358. The MP-PIC calculation captures the physics of
the Boycott settling problem. Below the downward-facing surface, a thin layer of near clear-
¯uid forms above the suspension which is illustrated by C in Fig. 2. The thin layer is seen in
Fig. 7, and is more pronounced for the vessel tilted 358. This wedge shaped layer is largest near

Table 1
Batch bimodal sedimentation (Davis et al. 1982)

Tilt 08
Number of parcels particle 1 8000
Number of parcels particle 2 8000
Initial volume fraction particle 1 0.03

Initial volume fraction particle 2 0.01
Particle 1 radius (mm) 63
Particle 2 radius (mm) 89

Particle 1 density (kg/m3) 2440
Particle 2 density (kg/m3) 2990
Fluid density (kg/m3) 992

Ps (pa) 50
b 2
y cp 0.6
x-gravity, y-gravity (m/s2) 0,ÿ 9.8

Number x-cells 5
Number y-cells 40
x-domain (cm) 5

y-domain (cm) 100
Fluid viscosity (kg/m-s) 0.0667
Max residual for yp, ug and dp 10ÿ10
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the top, horizontal surface and decreases to zero in the lower part of the vessel where particles
begin close-packing. The greater the incline of the vessel, the greater the clari®ed layer
thickness. On the opposite, upward-facing surface, particles concentrate forming a wedge which
corresponds to D in Fig. 2. Unlike the upper clari®ed region which is distinct, the lower dense

Fig. 4. Particle distribution for batch sedimentation (Davis et al., 1982). H=100 cm and b=5 cm.
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®lm gradient is not as steep. The dense particle layer is better seen in the particle volume
fraction contours shown in Fig. 8. The calculated dense particle wedge is small near the top
interface and becomes larger moving down in the container. The central region illustrated as B
in Fig. 2 and seen in Figs. 7 and 8 is calculated to be homogeneous from the top horizontal
interface stretching down in the container to where particles begin to close-pack. Fig. 9 gives
the particle volume fraction across the channel (x-direction) and at three axial levels ( y-
direction). The time is 100 s. The curves overlay each other indicating the volume fraction is
uniform axially and across the channel except near the walls. The clari®ed region at the top
wall (right in the ®gure), is calculated to be nearly constant along the wall with a thickness of
about 0.25 cm. Because the layer lies within two or three nodes, the calculation is not expected

Fig. 5. Sedimentation levels from bimodal suspension of particles (Davis et al., 1982).

Fig. 6. The height of sedimentation reported from calculations.
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Fig. 7. The particle distributions for batch sedimentation at 200 s. (a) Tilted 08; (b) tilted 208; and (c) tilted 308.

Table 2
Batch sedimentation. Container tilted 08, 208 and 358

Tilt 08 208 358
Number of parcels 8000 18111 18111
Initial particle volume fraction 0.1 0.1 0.1
Particle radius (mm) 65±71 65±71 65±71

Particle density (kg/m3) 2420 2420 2420
Fluid density (kg/m3) 992 992 992
Ps (pa) 75 100 100

b 2 3 3
y cp 0.7 0.6 0.6
x-gravity, y-gravity (m/s2) 0, ÿ9.8 ÿ3.35,ÿ9.21 ÿ5.62,ÿ8.027
Number x-cells 5 20$ 20$
Number y-cells 40 50 50
x-domain (cm) 5 5 5
y-domain (cm) 40 42 42

Fluid viscosity (kg/m-s) 0.0667 0.0667 0.0667
Max residual for yp, ug and dp 10ÿ8 10ÿ7 10ÿ7

$Nonuniform x-interval varying from Dx=0.158 cm at wall to Dx=0.297 cm at the center
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to capture details of the clari®ed region. However, the thickness which is calculated compares
reasonably with the measured thickness of 0.1±0.25 cm given by Acrivos and Herbolzheimer
(1979). The layer of dense particles on the upward facing wall (left in the ®gure) is calculated
to range from 0.5 to 0.65 cm wide.
The small particles with average radius of 68 mm in the viscous ¯uid produces Reynolds

numbers less than 0.03 and a high particle drag coe�cient of CD>30 000 sÿ1 which tightly
couples particles and ¯uid. Unlike the sedimentation in a vertical vessel, where particles slowly
descend through the ¯uid, particles in the inclined sedimentation are swept upward by rising
¯uid along the top wall. Likewise the ¯uid is dragged along with particles ¯owing down the
bottom wall. The ¯uid velocity ®eld for the 358 tilted container at time intervals is shown in

Fig. 8. Volume fraction of particles in batch sedimentation for a container tiled at 358.
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Fig. 10. Velocities less than 0.1 cm/s are not shown in the ®gure. A vortex pattern is calculated
to form. The large drag coe�cient gives a particle velocity near the same magnitude as the
¯uid velocity.
Velocities are largest near the walls with ¯uid ¯owing upward under the downward-facing

surface, and a dense mixture ¯owing down the upward-facing surface. A vortex pattern was
observed in experiments by Kinosita (1949). Kinosita measured particle velocities as high as
100 times Stokes velocity. Hill et al. (1977) calculated and measured particle velocities on the
order of 10 times Stokes velocity. The MP-PIC calculated velocities are large at the start of
sedimentation and decrease as particles settle out of solution. The MP-PIC calculation
produced maximum particle velocities on the order of 20 times Stokes velocity for the 358
tilted container. Decreasing the ¯uid viscosity from 0.0667 to 0.0188 (kg/(m-s) increased the
¯uid velocity in the clari®ed layer by about two. The lower ¯uid viscosity matches the ¯uid
used by Herbolzheimer (1983).
Fig. 11 compares the measured and MP-PIC calculated transient settling rates for the

container tilted 08, 208 and 358. The MP-PIC calculations compares well with the measured
vertical and inclined sedimentation rate data.

9. Instability at the upper clari®ed liquid interface

The interface between rising clari®ed ¯uid and particle mixture can form instabilities similar
to those of a ¯uid ¯owing down an inclined plate. Herbolzheimer (1983) presented
photographs of Kelvin±Helmholtz type waves at the interface. He observed that almost
immediately after an experiment started waves formed in the upper portion of the channel and
traveled up along the interface between the pure ¯uid and the mixture. The waves, once they

Fig. 9. Particle volume fraction distribution across the channel for the container tilted 358 at 100 s.
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appeared, grew rapidly with amplitude comparable to the thickness of the clear ¯uid layer. The
instabilities occurred for the vessel at small angles of inclination and were not present at large
angles. Herbolzheimer found the experimentally observed instabilities follow the general trends
predicted by linear stability analysis, but he was unable to quantitatively compare his analysis
with experimental data. The MP-PIC calculation for the vessel tilted 358 predicted low
amplitude waves early in the settling transient which lasted only a short time. Acrivos and

Fig. 10. Fluid velocity for container tilted 358.
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Herbolzheimer (1979) did not report instabilities for their experiment. A calculation was done
using the ¯uid properties from Herbolzheimer's (1983) experiment with the primary di�erence
from Acrivos and Herbolzheimer (1979) experiment being a lower ¯uid viscosity. The
calculation was made with ¯uid viscosity 0.0188 kg/(m-s) (used in the interphase drag), particle
radius 66 mm, and particle density 2440 kg/m3. For the vessel tilted 208, calculated instabilities
occurred early in the transient, and the wave amplitude was on the order of the clari®ed layer
thickness which was much larger than that seen in the calculation with the higher viscosity.
Fig. 12 shows the calculated particle distribution compared with the photographed mixture.
The calculated waves travel up the under side of the top wall, and within a minute, the waves
subside and the clari®ed ¯uid±particle interface becomes stable. Herbolzheimer observed
instabilities in the continuous sedimentation, and no time period for the presence of waves, as
occurs in batch sedimentation, was given. A second calculation was made with the vessel tilted
at a large inclination of 558. As in the experiment, no waves formed. Fig. 12 shows the
calculated particle distribution for the vessel tilted 558 compared with a photograph of the
sedimentation.
The calculated particle volume fraction (yp) and axial ¯uid velocity near the upper wall are

shown in Fig. 13 and re¯ect the observed instabilities. The clear ¯uid, with yp=0, ¯ows next
to the top wall, with waves periodically reaching the wall. The wavy region is considerably
larger than the calculated stable clari®ed region thickness. The ¯uid velocity, in the clari®ed
region is disrupted by the waves of particles. The clari®ed ¯uid velocity cyclically drops from
above 3.5 to less than 2 cm/s as waves of particles move into the clari®ed ¯uid layer.
Measuring the distance between peaks in Fig. 14, the wavelength at 14 s is about 5 cm.

Fig. 11. MP-PIC calculated and measured interface for suspension of particles. Measured data from Acrivos and

Herbolzheimer (1979).
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10. Particle stress

The calculations are not tuned to calculate the sedimentation problem. The interphase drag
is a standard constitutive equation used in droplet ¯ow. The particle stress is a simple model
which neglects o� diagonal terms in the stress tensor. The diagonal element of the stress tensor
is modeled by isotropic stress given by (9),

t � Psy
b
p

ycp ÿ yp
:

Fig. 12. Observation of the ¯ow for a volume fraction of 0.01 and ¯uid viscosity of 18.8 cP. (a) Large angle of
inclination; (b) angle is decreased and waves appear along interface in the upper region of channel. Reprinted with
permission from Herbolzheimer, E., 1983, ``Stability of the ¯ow during sedimentation in inclined channels,'' Phys.

Fluids, vol. 26, Fig. 2, p. 2044. Copyright 1983 American Institute of Physics; (c) calculated sedimentation at 20.5 s
with vessel tilted 558; (d) calculated sedimentation at 14.75 s with vessel tilted 208.
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The two constants, Ps and b, in this empirical model are not well de®ned. The choice for the
value of b and Ps used in this work is discussed below.
The purpose of the particle stress is to provide a pressure type force which prevents packing

of particles beyond a limit (close-pack volume fraction, y cp). The model captures the essence of
repelling particles from cells where the particle volume fraction is large, but the model does not
consider the in¯uence of particle velocities and particle sizes. The inclusion of o� diagonal
terms and more complete modeling is relegated to future work. The Ps term is not necessary to
provide a static balance between Ht and the hydrostatic head (considering particles as a ¯uid).
However, the model has a singularity at close-pack, and the stress gradient is very steep near
the singularity. The Ps term stretches the gradient giving a more stable approach to close-pack.
In the dynamic case, the particle stress retards the momentum of dynamic particles
encroaching on a dense particle region. If the particle stress is insu�cient to slow and repel a
dynamic particle entering a region near close-pack, over a ®nite time step, the small change in

Fig. 13. Particle volume fraction and ¯uid velocity at 14 s. Vessel inclined 208, viscosity 0.0188 kg/(m-s), particle

radius 66 mm, and particle density 2440 kg/m3.
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volume fraction near the singularity can produce a large stress gradient, which blows apart the
particle bed. Further, in the numerical model, the particle solids stress acts as a stabilizing
force on oscillations similar to the surface tension in the classic Kelvin±Helmholtz problem or
the density in buoyancy strati®ed ¯ow. The interface pressure from surface tension tends to
restore the interface to a stable state. Similarly in the numerical sedimentation problem, a large
particle stress damps instabilities at the interface between the particle-mixture and ¯uid, and
prevents waves from forming.
The normal particle stress model needs to limit the volume fraction to less than the close-

pack value, but not have an overly di�usive nature at low to moderate volume fractions. To
retain the advantage of stretching the particle stress gradient near the singularity (use of a large
Ps) which reduces numerical di�culties, and not have excessive stress gradients at low volume
fraction, the power, b, is applied to the particle volume fraction in Eq. (9). It can be shown
that using b=3, Ps can range from 1 to 100 Pa and the calculated results are the same in the
low volume fraction region which includes the clari®ed layer width where instabilities may
form. On the other hand, if b=1 and Ps>8 Pa the instabilities are damped. Therefore, by
using b=3 in this study, the calculated low volume fraction region (yp<20%) is insensitive to
Ps and Ht, while near close-pack, a value of Ps=100 Pa provides a stable solution.

11. Grid independence

In particle solutions, the grid cell size should be large enough to contain a number of
particle parcels. The grid must also be ®ne enough to resolve the physics of the problem. A
check is made to evaluate the in¯uence of the grid on the sedimentation calculations. Results

Fig. 14. Batch sedimentation rate for container tilted 358 for ®ne and coarse grids.
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from a coarser grid with fewer parcels is compared to results from the ®ner grid used in this
study. The calculation was for a vessel tilted 358, and the properties of the calculations are
given in Table 2 except for di�erences listed in Table 3. Fig. 14 shows the sedimentation rate
for the two calculations is the same, and Fig. 15 shows that the particle distribution has the
same appearance. This suggests that the grid resolution or number of parcels does not unduly
in¯uence the calculations in this study.

Fig. 15. Particle distribution for container tiled 358 for ®ne and coarse grids. (a) Coarse grid; (b) ®ne grid.
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12. Concluding remarks

The MP-PIC numerical method performs well predicting sedimentation problems. The
Lagrangian±Eulerian numerical approach allows calculation of dilute particle ¯ow to dense
close-pack particles. The application to vertical bimodal sedimentation illustrated the ability to
calculate the sedimentation of two sizes of particles. Further, an advantage of the MP-PIC
scheme, is that there is practically no limit to the number of sizes and densities of particles
which can be modeled.
There was no tuning of the MP-PIC calculation for batch sedimentation. The interphase

drag (related to a particle hindrance function) was a general expression used in droplet ¯ow. A
standard particle stress model was used where the particle stress was shown to be insensitive to
the Ps constant in the model at low to moderate volume fraction providing that b=2 or 3.
Approaching close-pack, the P s stretches the steep gradient near the singularity giving a
smoother numerical solution.
The calculated settling rate for both the vertical, bimodal solution and the inclined mixtures

compare well with measured data. The MP-PIC solution predicted the physics of both the slow
vertical sedimentation and the more dynamic inclined sedimentation. In inclined sedimentation,
a clari®ed layer was predicted at the upper wall, and a dense particle layer was predicted at the
lower wall. Circulation currents were calculated in the vessel and the particle distribution was
homogenous except near walls and at the vessel bottom where particles settled out of solution.
The MP-PIC method also predicted instabilities at the interface between clari®ed ¯uid and

mixture. A weak instability was calculated for the experiments by Acrivos and Herbolzheimer
(1979). By lowering the viscosity to the value used in experiments by Herbolzheimer (1983),
instabilities were calculated which were similar to those measured. Instabilities formed at the
start of sedimentation, but died out as velocities decreased with time.

References

Acrivos, A., Herbolzheimer, E., 1979. Enhanced sedimentation in settling tanks with inclined walls. Journal of Fluid Mechanics 92,

435±457.

Al-Naafa', M.A., Selim, M.S., 1989. Sedimentation of polydisperse concentrated suspensions. The Canadian Journal of Chemical

Engineering 67, 253±263.

Amsden, A.A., O'Rourke, P.J., Butler, T.D., 1989. KIVA-II: A computer program for chemically reactive ¯ows with sprays. LA-

11560-MS, Los Alamos National Laboratory.

Anderson, D.A., Tannehill, J.C., Pletcher, R.H., 1984. Computational Fluid Mechanics and Heat Transfer. Hemisphere, New York.

Andrews, M.J., O'Rourke, P.J., 1996. The multiphase particle-in-cell (MP-PIC) method for dense particle ¯ow. International Journal

of Multiphase Flow 22, 379±402.

Auzerais, F.M., Jackson, R., Russel, W.B., 1988. The resolution of shocks and the e�ects of compressible sediments in transient

settling. Journal of Fluid Mechanics 195, 437±462.

Table 3
Di�erence between coarse and ®ne grid. Container tilted 358

Coarse Fine

Nodalization (x by y) 16� 30 20�50
Number of parcels 12000 20000

D.M. Snider et al. / International Journal of Multiphase Flow 24 (1998) 1359±1382 1381



Batchelor, G.K., 1988. A new theory of the instability of a uniform ¯uidized bed. Journal of Fluid Mechanics 193, 75±110.

Boycott, A.E., 1920. Sedimentation of blood corpuscles. Nature 104, 532.

Davis, R.H., Acrivos, A., 1985. Sedimentation of noncolloidal particles at low Reynolds numbers. Annual Review of Fluid Mechanics

17, 91±118.

Davis, R.H., Herbolzheimer, E., Acrivos, A., 1982. The sedimentation of polydisperse suspensions in vessels having inclined walls.

International Journal of Multiphase Flow 8 (6), 571±585.

Gidaspow, D., 1986. Hydrodynamics of ¯uidization and heat transfer: supercomputer modeling. Applied Mechanics Review 39, 1±22.

Gidaspow, D., 1994. Multiphase Flow and Fluidization Continuum and Kinetic Theory Description. Academic Press, Boston, MA.

Harris, S.E., Crighton, D.G., 1994. Solutions, solitary waves and voidage disturbances in gas-¯uidized beds. Journal Fluid Mechanics

266, 243±276.

Herbolzheimer, E., 1983. Stability of the ¯ow during sedimentation in inclined channels. Physics of Fluids 26, 2043±2045.

Hill, W.D., Tothfus, R.R., Li, K., 1977. Boundary-enhanced sedimentation due to settling convection. International Journal of

Multiphase Flow 3, 561±583.

Kapoor, B., Acrivos, A., 1995. Sedimentation and sediment ¯ow in settling tanks with inclined walls. Journal of Fluid Mechanics 290,

39±66.

Kinosita, K., 1949. Sedimentation in tilted vessels. Journal of Colloid Interface Science 4, 166±176.

Mirza, S., Richardson, J.F., 1978. Sedimentation of suspensions of particles of two or more sizes. Chemical Engineering Science 34,

447±454.

Nakumura, H., Kuroda, K., 1937. La cause de l'acceleration de la vitesse de sedimentation des suspension dans les recipents inclines.

Keijo. J. Med. 8, 256±296.

O'Rourke, P.J., 1981. Collective drop e�ects on vaporizing liquid sprays. Ph.D thesis, Princeton University.

Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere, New York.

Ponder, E., 1925. On sedimentation and rouleaux formation. Quarterly Journal of Experimental Physiology 15, 235±252.

Richardson, J.F., Zaki, W.N., 1954. Sedimentation and ¯uidization: Part I. Transactions of the Institution of Chemical Engineers 23,

35±53.

Risk, M.A., 1993. Mathematical modeling of densely loaded particle laden turbulent ¯ows. Atomization and Sprays 3, 1±27.

Shih, Y.T., Gidaspow, D., Wasan, D.T., 1987. Hydrodynamics of sedimentation of multisized particles. Powder Technology 50, 201±

215.

Snider, D.M., O'Rourke, P.J., Andrews, M.J., 1997. An incompressible two-dimensional multiphase particle-in-cell model for dense

particle ¯ows, LA-13280-MS. Los Alamos National Lab., Los Alamos, NM.

Williams, F.A., 1985. Combustion Theory. 2nd. Benjamin/Cummings, Menlo Park, CA.

D.M. Snider et al. / International Journal of Multiphase Flow 24 (1998) 1359±13821382


